A solid with a hierarchical tetramodal micro-meso-macro pore size distribution

نویسندگان

  • Yu Ren
  • Zhen Ma
  • Russell E. Morris
  • Zheng Liu
  • Feng Jiao
  • Sheng Dai
  • Peter G. Bruce
چکیده

Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70  nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling template nanocasting and self-activation for fabrication of nanoporous carbon

Hierarchical nanoporous carbon (NPC) with great surface area and developed pore size distribution has been intently concerned. Herein, we report a facile method coupling template nanocasting and self-activation to fabricate nanoporous carbon with continuous micro, meso and macro pores, in which CaCO3 acted as template and activation reagent while the flour was the carbon precursor. Effects of m...

متن کامل

An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...

متن کامل

A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS) as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA) topological structure, mic...

متن کامل

A Macro-model for Nonlinear Analysis of 3D Reinforced Concrete Shear Walls

Architectural limitations in many situations make it necessary for the RC shear walls to be extended in plan in different directions at a single location that makes them a 3D configuration. Analysis of such walls is very challenging. In this research about 450 cases of 3D shear walls are considered with different shapes and heights. L, T and H-shape walls are studied. They are nonlinearly analy...

متن کامل

Multiple scale investigation of molecular diffusion inside functionalized porous hosts using a combination of magnetic resonance methods.

Mass transport of molecular compounds through porous solids is a decisive step in numerous, important applications like chromatography or heterogeneous catalysis. It is a multi-scale, hierarchical phenomenon: macrodiffusion (>μm) is influenced, in addition to parameters like grain boundaries and particle packing, by meso-scale (>10 nm, <μm) factors like particle size and the connectivity of por...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013